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PROPAGATION OF COMPLEX DISCONTINUITIES WITH PIECEWISE CONSTANT AND VARIABLE 
VELOCITIES ALONG CURVILINEAR AND BRANCHING TRAJECTOR IES* 

A.S. BYKOVTSEV 

The method of functionally invariant solutions of wave equations utilizing 
the principle of superposition is used to construct exact solutions for a 
system of complex discontinuities propagating with piecewise constant 
velocities along curvilinear and branching trajectories. A passage to 
the limit is shown in the course of which the solution constructed yields 
a solution for the case of the propagation of discontinuities with variable 
velocities along smooth curvilinear trajectories. It is shown that if 
the propagation of a major discontinuity (crack) begins with the formation 
of a pure shear element, then as the velocity increases, dislocation 
components of the displacement vector will appear at the discontinuity; 
if on the other hand the propagation of a major crack begins with the 
formation of a pure dislocation element, then as the velocity of propagation 
of the crack increases, it will branch and considerable shear components 
of the displacement vector will form on the branched segments of the crack. 
The minimum values of the branching angles are determined. Theoretical 
seismograms are given computed for the curvilinear and branching cracks 
consisting of alternating elements with dislocation and shear components 
of the displacement vector at the discontinuity. 

The high-frequencyemissions observed in nearly all seismograms cannot be explained within 
the framework of the model representations developed in /l-4/ and based on the concept of a 
seismic focus as the only propagating shear fracture area. In this connection, considerable 
efforts have been made in developing the concepts of a discrete, intermittent (jump-like) 
growth of the fracture process at the foci of tectonic earthquakes /!?I-lo/**. (**Bykovtsev A.S. 
Some problems of the dynamic theory of dislocation discontinuities and their seismological 
applications. Candidate Dissertation. Mask. Gorn. Inst. 1979.1 The analyis of numerical 
solutions of problems concerning the jump-like motions of shear cracks /5, 61 has led to the 
formulation of an essentially new "barrier" model oftheprocess of growth at the focus of a 
tectonic earthquake /6/ which represents a generalization of the models /l-4/. The work done 
in this area is generalized in the monographs /U-13/, where the investigations carried out 
are discussed in detail. 

The use of the force approach in /14-16/ to describe the cracks, i.e. in the case when 
the stresses are specified on the surface of thecrack,considerably limits the possibility 
of modelling the motion occurring in the course of fracture within simple, as well as complex 
foci of tectonic earthquakes. Thus the analytic solutions /14, 15/ were not used for an ', 
effective analysis of specific seismological problems, since the numerical realization of the 
analytic solutions and the derivation of physical conclusions from /14, 15/ presented a very 
complex, practically insurmountable problem requiring the solution of pentuple integrals. For 
this reason, many workers preferred the kinematic description of the fracture areas, and this 
proved to be the most productive approach in investigating the special features of the wave 
fields originating at simple as well as complex earthquake foci. At present, a sufficient 
number of examples exist of the use of the kinematic approach for effective modelling of the 
special features of seismic emission (/l-3/ etc.). The basic idea of constructing solutions 
consists of the fact that the solution of wave equations for a point source in the form of a 
momentless equilibrium dipole (the emission field of such a point source is equivalent to the 
emission field of an infinitesimal dislocation) was integrated over the fracture area of the 
given configuration. The solutions obtained were used to analyse a number of interesting 
problems, it was found, however, that generalizing the method to embrace a complex system of 
discrete discontinuities leads to an exponential growth in the computer time necessary to 
carry out such calculations. 

A basically different method was developed by in /7-9, 17-23/, where the magnitude and 
direction of the disnlacement vector at the fracture was specified over the whole of the 
fracture area in the form of a boundary condition, and the boundary value problems of the 
*Fr~kl.~~at~m.~ekha~.,50,5,804-814,1986 
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theory of elasticity were then solved. This is how the problem of a jump-like propagation of 

a circular fracture area was solved in /7/ and the analogues of the well-known Griffith, Yoffe 

and Panasyuk-Lozovoi problems were solved in the kinematic formulation in /ll-20/. It was 

shown, as a result, that the behaviour of the dislocation discontinuities is qualitatively 

analogous to the behaviour of cracks, the sole difference being in the values of the numerical 

ratios of some of the parameters, and is connected with the fact that in a small neighbourhood 

of the crack edge the stresses and deformations are proportional to the distance of the power 

-t, while in the theory of dislocation discontinuities the behaviour of the stresses and 
deformations in a small neighbourhood of the crack edge depends on the configuration of this 

edge /21/. 

The use of the kinematic description ofthe discontinuitiesenabledthe author, in the work 

cited in the footnote, to construct a solution, and to calculate the theoretical seismograms 
for a curvilinearly propagating shear fracture. The fundamentally novel, basic qualitative 

result which emerged from the solution obtained was that the seismic emission may become sign- 
alternating in certain directions. This clarified the physical nature of the sign-alternating 
trains of impulses observed in real seismograms even after removing the effect of the factors 

connected with the layered nature of the earth's crust. The result was used in /O, 9/ to 

offer a basically new model of the fracture processes occurring at the foci of tectonic earth- 

quakes, based on the jump-like propagation of the major fracture along a piecewise smooth 

curvilinear trajectory. The model generalizes substantially the models of /l-4/, as well as 

the barrier model /5, 6/. A detailed analysis of the wave fields generated by the jump-like 

propagation of the discontinuity was carried out in /22/, together with a study of how the 

form of the impulses depends onthefunction describing the displacement vector along the 

discontinuity, and analysis of the form of the theoretical seismograms produced by a curvilinear 

unit shear crack. A solution is obtained for an antiplane system of star-like cracks, and the 

diagram of the directions of seismic emission is analysed in /23/. 

Thus the fact that the growth of fractures in rocks occurs not over a smooth flat surfaces, 

but along some curved or branching surfaces, makes the problem of the dynamic growth of 

curvilinear cracks consisting of alternating shear and shift elements, particularly interesting. 
Therefore, the main object of this paper will be to study representations of dynamic fields of 

elastic perturbations generated by arbitrary cracks propagating with varying velocity along 
arbitrary curvilinear trajectories. The solutions obtained can be used to solve one of the 
fundamental problems of theoretical seismology, namely to determine new relations connecting 
the elastic displacement fields with the position, orientation, the trajectories and velocities 
of propagation of cracks in the earth's interior. Another application (which may prove even 
more important than the seismological one) is the study of acoustic emission signals in 
stressed constructions. These signals portend the total disintegration of the structure (they 

emanate from the dynamic dislocations and cracks). 

1. Basic representations and construction of the fundamental solution. Let 

us consider the following auxiliary problem. Let a generalized dislocation discontinuity 
begin to propagate at the initial instant t= 0 from the origin of the Cartesian system of 

coordinates Oxyz with constant velocity u in the direction of the x axis, through a homo- 
geneous isotropic medium whose shear modulus is p. We shall regard as a dislocation dis- 
continuity, the discontinuity whose description involves the kinematic method of specifying 
it, i.e. the magnitude and direction of the displacement jump is specified along the fracture 

line, depending on the coordinate and the time, at every point of the fracture surface. The 
initial conditions are zero. 

We denote by U,, U,, U, the components of the displacement vector along the corresponding 

5, Y, s axes of the Cartesian rectilinear coordinates. The problem is assumed to be plane, 
i.e. u,, u,,, UZ are functions of z and y only. 

The basic equations of the dynamic theory of elasticity in this case have the form 

u, = U," + U,', L',,= U," + lJ,=, u, = u, (1.1) 

Here the superscripts p, s correspond to the longitudinal and transverse displacement 
components, and cp and cg are the velocities of the longitudinal and transverse wave respect- 
ively (c, > c,). 

Let the dislocation crack be described by a homogeneous function of zero dimension I'(r,'t). 
The following expansion is admissible in the general case: 

-- 
f (r/t)= fl (r/t) i I- f2 (r/t) j + A (rlt)k (r = 11 9 + y2 ) (1.2) 
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where i, j,k are unit vectors directed along the z,y,z axes respectively. We can therefore 
represent the dislocation crack as the sum of shear, shift and antiplane shear cracks and 
obtain the following boundary conditions (a_, (s?,,,, u,,, 'J,,,, c&, CT,,, are the components of the 
stress tensor): 

1-, = l12fl (r,‘t), Dill, = 0 when y = 0, 0 (5 < vt (1.3) 

u, = 0, s2,y = 0 when y = 0, z< 0, z> ut 

for the shear discontinuity (the problem is skew symmetric with respect to the z axis), 

U, = I/?fp (r/t), ri,, = 0 when y = 0, 0 < I < ut (W 

u,=u, oxy=o when y=O, x<O, x>vt 

for the shift discontinuity (the problem is symmetric with respect to the 5 axis), 

U, = ?*f3 (r/t) when y = 0, 0 i x < ct (1.5) 
c: = 0 when y -= 0, X< 0, X> vt 

for the antiplane shear discontinuity. 
The problems formulated above are selfsimilar. We shall solve these problems using the 

general approach /24/ based on representing the solutions of the equations in terms of 
analytic functions of a complex variable, enabling us to formulate the selfsimilar problems 
as certain Riemann-Hilbert problems for a half-plane. 

If the functions LU,, LU,, Lc’, and homogeneous, then the following notation can be used: 

ug = LU,, u,,” = LU,, U,” = LU,, (S1.k = LCT,,, u;;, = Lo,,, (1.6) 
(I 

u ry = Lo,,, o:, = Lus,, a;, = Lo,; L = 8m+n/axmc%n 

Then the general representation of the solutions in terms of a single analytic function 

(1.7) 
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for the problems skew symmetric about the x axis 19, 22/, and 

for the antiplane case. 
Using the representations (1.7)-(1.9), we formulate the boundary value problem (1.1)- 

(1.5) in the form of the following Dirichlet problem: 

Re Wj (2) = ‘izfj (1;~) when Im z = 0, Re z > 0-l 

Re Wj(z) = 0 when Inis = 0, Re z< u-1 

(1.10) 

The solution of the boundary value problem (1.10) is given by the Schwarz inteQra1 /25/ 

(1.11) 

Knowing the function w,(z), we can use formulas (1.7)-(1.9) to write the stress and 

displacement components, remembering that L = 1 since the displacements are uniform functions. 
Let us consider in more detail the case when 

f (r/t) = B (b,, b?, b3) = const 

In this case the solution of (1.10) has the form 

tVj(z)=-&l(l-Vq, 

Substituting (1.12) into (1.7)-(1.9) and summing 
following expressions for the displacement field: 

p=-1 (1.12) 

the solutions obtained, we obtain the 

(1.13) 

arc, = arctg 
ymp sin ‘p ~jrn, sin 'p 

I--yn,cosm ' arcs= arctg p-yn,cosrp 

I;y= ym,(yrz,sin 2(r .-+ 2sin (r), fp- ym,, (pn,cos2~p + 2 coscr) 

P;= $lm,(y@-ln, sin 2(p f 2 sinv), 

f, = ypnlS (y#3%, cos 2$ -j- 2 cos cp) 

A-&. &*_-1-y~, p*“zi_+, p&+-2, 

1n a small neighbourhood of the moving crack edge, i.e. when rl = 1/(z - ut)' f y?---t 0 and 

rpr = arctg [y/(x - z&)1, the stress field behaves as follows: 

crtr=c~cos2~l -i_ ~,,,sin~'~.l f a,,,sin 2v1= [b& + b,Kf,] D (1.14) 

crprc = a,, sin’% + o~,~, cos2 qi- a,.,, sin 2ql= [b&i\ f b&&] D 
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cl - -Db,P,y,-l sin qPr, oUi = LX&y,-'cm qpl 
yrr(i - y2sin2 rp,), ya = (l - y2j3-% sin" qQ,, D = $hr, 

The functions (1.13) and (1.14) play the part of the fundamental solutions, which can be 
used, with help of the principle of superposition, to construct the solution of the problem 
for an arbitrary system of cracks propagating with arbitrary variable velocities along 
arbitrary curvilinear trajectories. 

2. Construction of the general solution. Suppose we have m principal directions 
in which the curvilinear cracks begin to propagate at instants of time t = to” (6 = 1, 2, . . . . m) 
from the points (z,*, yp). We shall assume that the trajectory of every crack consists of n! 
rectilinear segments making angle; ai (i = 0, 1, . . . . n - 1) with the I axis, the tips of these 
segments moving with velocities rsil. Let the values of the displacement vector components at 

every rectilinear segment of the crack be b,?,<+i. We will assume that the instants of time ti& 
correspond either to the instants of change of direction, or to the instants at which the 
rectilinear cracks stop. 

Then the solution of this problem will consist of the superposition of the fundamental 
soltuions (1.13) constructed above, with the obvious change of arguments 

X-*X,, Y-*gd, t --a t - t,*, 6 c' -,. ci+_, b, -z. b;, i+l (2.1) 

and will have the following form: 

m 71-I 
(2.2) 

(2.3) 

Here the upper and lower indices on the displacements U are the same as in the fundamental 

solution given by (1.131, and are therefore omitted in order to simplify the expressions. 

We shall assume that the trajectories of curvilinear cracks are given for every principal 

direction in the form of smooth functions $(x, y, z. l). Let the values of the displacement 
vectors on every separate curvilinear crack be given in the form of uniquely specified functions 
bs (~7 Y, 2, 0. and the velocities of propagationofthe crack edges in the form of the functions 

1." (1). Then the theoretical seismograms can be found using the following well-known procedure. 
By decomposing every curvilinear trajectory into a series of piecewise-rectilinear Segments 

and determining the mean values of the functions 
we can use the solutions (1.13) and (2.2). 

Accord~~'jstoy.;h~; ~;;~,l;i~(') for every segment, 
, the displacement jump 

andthevelocities of motion ofthe crack edges will be constant on every piecewise linear 
segment. Then, by increasing the number of segments we can bring the solution (1.131, 

as close to the solution of the problem of the propagation of the cracks with variable 
velocities along the smooth curvilinear trajectories as we please, since it is obvious 
if we pass tothe limit in the solution (1.13), (2.21, (2.3) as 

h n --.. X!, t,,1- t,a -JO, ur+, - u,n -2 0 

by, ,+I - b;,i--*O, a:+l-qb-+O 

then the solution of theproblem with given piecewise-linear functions gi", bia L’i’ can be 

12.2) 

that 

(2.4) 

brought 
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as close as desired to the solution of the problem of the propagation of cracks with variable 

functions gb, bb, P. 
Note that the approach proposed here can be especially effective in analysing seismograms 

and can serve as a means of establishing new relations between the parameters of the theoretical 

seismograms and of complex cracks occurring in the focus zones of tectonic earthquakes. 

3. Analysis of the solution and numerical calculations. The study of how the 

stresses (1.14) near the moving crack edge depend on the angle 'Pl measured from the direction 

in which the crack propagates, andon its velocity of propagation, show that beginning from 

some value of the critical velocity L', . two symmetrical maxima in the stresses j?CJ in the 

case of pure shear discontinuity and in the stresses %P in the case of pure dislocation 

discontinuity appear near w1 = 0. This implies that the conditions forthe rectilinear propaga- 

tion of the crack become unstable as the velocity increases. Thus, when the velocity of motion 

of the crack tip continues to increase further, i.e. when c> lit, rectilinear crack propagation 

becomes impossible since either the trajectory will curve, or the crack will begin to branch. 

The corresponding equation for this critical velocity is the same for both the shear and the 

dislocation discontinuity /17, 19/. The equation is found from the condition that 

a23 rm 
w v1=0== 

0 forpure shear; --0 for pure dislocation (3.') 

and has the form /17/ 

-- 
41/1 - a"B'1/1 - a1 - (a" - 2)2 - 2 (2 - a2) aa = 0, V* = c& (3.3) 

Let us give some values for the root cr. of (3.2) depending on the value of Poisson's 

ratio v 
c 0.49 0.485 0.515 0.55 0.59 0.64 

Y 0 0.l 0.2 0.3 u.4 0.5 

This shows that the critical velocity of rectilinear propaqation of dislocationdisconti- 
nuities of the first type, i.e. ofdiscontinuities with a stress singularity of the type o,j~=;f;il'-' 

/21/atthe tip of the crack, will be approximately lo% less than that for cracks /26/, i.e. for 

dislocation discontinuities with a singularity of the type eijZKijr-'* at the tip of the crack. 

We note that in the case of antiplane shear discontinuities the velocity of the shear wave 

is the limiting velocity. 
Fig.1 shows the variation in the stress intensity coefficients Kf,, Kilr, ICflp for a pure 

dislocation discontinuity b,= b, = 0, b,=l (Fig.la) , Kf:, Kit, K:: for the pure shear disconti- 

nuity b, = 1, b, = b, = 0 (Fig.lb) and Kf:“, Kg:‘, I(‘+” for the complex discontinuity rp b, = 1, b, = 

i,b, = 0 (Fig.lc). The curves I,Z,S correspond to the velocities of propagation of the dis- 

continuities O.lc,, O.~C,, 0.8~~. The qualitative behaviour of the graph for K& is the same as 

that given by Yoffe in /26/. 

Fig.1 shows that the increase in velocity is accompanied by an increase in the values of 

the coefficients Krr in all directions, for all three types of discontinuities; although 

characteristic maxima appear in the values of the coefficients K,, (with increasing velocity 

of propagation of the discontinuity), their magnitude decreases in all directions for all 

types of discontinuity. The behaviour of the coefficients K,,p depends essentially on the 

direction. Thus all three types of discontinuity are characterized by two directions in which 

the values of K,, are practically independent of the velocity of propagation of the dis- 

continuity. The directions divide the space between the front of the moving discontinuity 

into two zones. In one of these zones the values of K,.,, decreases, and in the other it 

increases. 

Thus, when -b'3°Grp,S +03" for pure dislocation, --3;. < CJ, & +3i" for pure shear and -W 5 

'I, S +4i" for a complex discontinuity, the value of I<,.,! decreases, while for the remaining 
values of the angle '1‘1 it increases with increasing velocity of propagation of the dis- 

continuity. If we then assume that the directionsinwhich the values of the coefficients A',,, 

are practically independent of the velocity of propagation of the discontinuity are responsible 
for the formation of branched segments of the crack, we obtain the values of the smallest 
possible branching angles c+,z.+_(B~' for a pure disclocation discontinuity, and c(,= +.ii’ for 

the pure shear discontinuity, and for a complex discontinuity the branching angles will depend 

on the ratio of the shear and dislocation components of the displacement vector at the dis- 
continuity. 

Thus, analysing Fig.1 we find that if theprocess of fundamental development of the dis- 

continuity begins with a pure dislocation element of the fracture, then as the velocity of 
propagation of the crack increases we have, apart from the appearance of two symmetrical maxima 
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in the stresses ~i(,,~, also a sharp increases in the stress firy- along specified parts of the 

zone situated in front of the moving crack edge. This must lead to symmetrical branching of 
the crack andthe formation of considerable shear components of the displacement vector on the 

bounded segments. 

a 

b 

Fig.1 

Fig.2 

If the fundamental crack propagation begins from the pure shear fracture element, then as 

the velocity of propgation increases we have, in addition to the appearance of two symmetrical 
maxima in the stresses G,,,, also the formation of a discontinuity in the field of tensile 

stresses on one hand, and of a zone of compressive stresses on the other hand. This should 

lead either to deviation of the trajectory of motion by an angle p from its initial direction 
and the formation of a considerable dislocation component of the displacement vector on the 
deviating segment of the crack, or to splitting of the crack into two branches. On one of 

these branches the displacement vector will have only the shear component, and both the shear 

and the dislocation component on the other branch. 
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Fig.3 

Figs.2 and 3 show theoretical seismograms (displacement-timerelations) for the crack 

branching and bending schemes described above. The solid line depicts the behaviour of the 
component ~1~ and the dashed line the component I,,~ of the displacement vector. The theoretical 
seismograms were computed using formulas (1.13), (2.1)-(2.3) with help of a FORTRAN program 
written to produce the numerical results inthe,form of graphs. The maximum computer time for 
a single version including computing three components of the theoretical seismograms and 
their spectra at 12 observation points and of the diagrams showing the directions of seismic 
emission, did not exceed 5 min. The initial parameters of the medium and the cracks were as 
follows: cp = 2301, m/set, cg = 1300 m/set, r= 900 mm, m = 2, .I = $ = 3, ~1 .= via =: 750 m/set, ,OL = *!,2 := 
l,"' = y,= = 0, CL,? = r),d2 ~-z 0, all = -450, ala = 45;. CL*1 = oltl = II, &,' = ?I,,,2 -= 0. 0 b,,,' = b,_,- = 0.7, h ,,$,= b,,,” = 0, b,,,’ = 

b,,J = 1, b,,,’ = JQ,~~ =- 0.7, Ir& =: 'I~,.$ = i, t,,' -x L"? = 0, f,l == t,2 = I,' = t," = 25.10-6 set, &1 E t3'? = 1,' zzz t,2 = 51).I,,-" 

set t,l= ta2= 75.10-" set for the crack beginning to propagate froma pure dislocation element 

(Fig.2), and the seismograms were computed for CP= 0.60. 120 and 180'. The parameters m= l.n*= 

5. cI1 = 780 m/set, 1"1 I= y,,' = Z"1 = 0, CL11 = -45‘ '_ ';"'I ;&3;_7 ,-42°,a;;1 = 0, t,,l = 0, t,' = t21 = Zj.lO-U set, 
t,' = tll = 50.1(:-' set , t,' = fel = i5.1f.Y set, ,I 

1_ 
gl 6 t!,’ :- 125.10-" set were used for 

a crack beginning to propagate from a pure shear element (Fig.3) and the seismograms were 
computed for CD = 30, 60,120, 150, 211). 240, 3OO and 330'. 

We see that in both cases the form of the theoretical seismograms appears to be consider- 

ably complicated by the high-frequency emission manifesting itself in the seismograms by the 

appearance of characteristic extrema and step-like segments. The segments correspond to the 

instances of arrival of the waves from the shear and dislocation elements of the crack 

appearing when the trajectory of motion of the crack becomes curved, and are also connected 

with the jump-like changeinthe velocity of propagation. When the path of crack propagation 
is curvilinear (Fig.31, the seismograms with sign-alternating trains of impulses are observed 
in separate directions. The sign-alternating train of impulses in the P-waves (longitudinal 

waves) will be sharpest along the principal direction of crack propagation, i.e. it will 

depend essentially ontheposition of the seismic focus and the observer, and on the magnitude 

of the angles of rotation of the separate segments of the crack. 

We note that the larger the angles of rotation of the separate crack elements, the more 

there will be observation points at which the sign-alternating seismograms will be fixed. 
Thus when the angles of rotation of the separate segments of pure shear cracks are close to 
900, the sign-alternating signals in P-waves will be observed in almost all directions. 

Analysing Figs.2 and 3 we can see that the duration of the general signal in the direction 
of motion of the crack is much shorter, i.e. the high frequencies will be higher in the 
direction of motion than in the opposite direction. This is an obvious example of the Doppler 
effect. This special feature of the wave field can be used as an important factor in choosing 
the plane of main propagation of the crack and in determining its direction of propagation. 

The integral estimate of the components U, shows that the total emission in the P-waves 
(over all observed points) will be positive (i.e. compressive), since the principal crack 
contains mixed elements on which we have the dislocation component of the displacement vector. 
Therefore, if an analogous effect is discovered when analysing full scale seismograms, we can 
assert that in the case of the real earthquakes the complex elements ofthecrack will grow, i.e. 
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we shall have both the shear as well as the dislocation components of the displacement vector 
on the principal fracture surface. 

Thus, analysing in more detail the recordings of full-scale seismograms over a number of 
stations, we can obtain additional information concerning the character of the fracture process 
occurring within the earthquake foci. 

The author thanks V.Yu. Sokolov for help in writing and debugging the computer programs. 
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